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Abstract—Osteoarthritis is a chronic and crippling disease 
affecting an increasing number of people each year. With no 
known cure, it is expected to reach epidemic proportions in the 
coming years. Currently, there is strong interest in developing a 
fully automated cartilage area/volume measurement method in 
the medical field to assist both pharmaceutical companies and 
medical professions in researching the disease. This paper 
describes the development of a semi-automatic system for 
segmenting and measuring human knee cartilage volume from 
Magnetic resonance imaging (MRI) scans. The cartilage volume 
obtained from the semi-automated method has been 
benchmarked against the current gold standard (cartilage 
volume from manual segmentation). 

I.  INTRODUCTION 
According to the Arthritis Foundation of Australia, over 3.4 

million Australians suffer from some form of arthritis. It is 
estimated that 16.7% of the population have some form of 
arthritis at a total cost of $11.2 billion to the community each 
year. Arthritis means “joint inflammation” and is a serious 
chronic condition with no known cure. There is currently an 
urgent need to better understand the disease, as arthritis is a 
major cause of disability and pain in Australia. 

Osteoarthritis (OA) is the most common form of arthritis 
and involves the gradual break down and loss of articular 
(joint) cartilage. It affects about 14% of the adult population [1] 
and is most prevalent in the knee and hip joints. Recent studies 
have shown that knee cartilage volume can be measured 
accurately and reproducibly from MRI scans [2-4]. Radiologic 
assessment of joint space narrowing (JSN) is currently 
recommended as the best measure of OA progression and 
studies have shown that cartilage volume measured from MRI 
scans correlate with the radiographic grading of OA [5-7]. 
Changes in cartilage volume are currently being used as a 
marker to predict OA onset or progression, and such 
measurements are emerging as a possible measure of OA 
severity in the knee [8]. 

Quantifying cartilage volume in OA will enable evaluation 
of therapies that may slow down or stop cartilage degradation 
and also preventive OA developing. There is a strong demand 
to automate the measurement process because large-scale 
clinical trials and epidemiological studies will be needed to 
address these issues. Research by the team of the 3rd author 
(Cicuttini) at the Department of Epidemiology and Preventive 

Medicine indicate that measurement of the tibial cartilage alone 
is a valid indicator of cartilage volume [9, 10]. The tibial 
cartilage is a clearly defined anatomical structure and thus 
enables measurements that are easily reproducible. Measuring 
and segmenting the femoral cartilage is less reproducible and 
more inaccurate because it is a continuous structure and forms 
part of three joints, the patellofemoral, lateral tibiofemoral and 
medial tibiofemoral joints. The femoral cartilage articulates 
with the patella, medial and lateral tibial cartilages and this 
makes it difficult to find the most appropriate component to 
measure.  

Current methods of cartilage volume measurement involve 
some form of manual segmentation carried out by a trained 
clinician. The key steps in this segmentation process involve 
delineating the cartilage and separating it from the surrounding 
tissues. Today, it is widely accepted that T1-weighted gradient 
echo sequences with spectral fat suppression displays cartilage 
with high contrast to surrounding tissue [11]. These sequences 
produce images in which the cartilage appear bright compared 
to all other tissue. Images of a patient’s knee are obtained using 
MRI with such a setup. The scans obtained are greyscale 
images in the sagittal plane and consists typically of 60 images 
(slices) for each knee. Using some form of medical display 
software, the clinician will visually inspect and identify the 
presence of cartilage on each image slice. If cartilage is 
present, the cartilage boundary is manually traced, see Fig. 1. 
After all 60 slices have been processed, the cartilage volume 
can be estimated using Cavalieri’s principle [12, 13], where the 
sum of the segmented cartilage area is multiplied by the inter-
slice distance (slice thickness). 

This manual process is laborious and can take up to 1 hour 
to process a single patient knee. It is also subject to the 
judgement of the clinician and requires significant experience 
and training to obtain accurate and reproducible results. These 
factors increase the demand for automating the segmentation 
process. There are currently a number of semi-automated 
segmentation methods that have been developed [14-19]. These 
usually involve a human operator initialising the procedure by 
setting a number of starting points for each slice where 
cartilage is present, followed by an automated segmentation 
process. Edge detection, active contours (snakes), template 
matching, and statistical models are some of the segmentation 
techniques used. We present in this paper a semi-automated 



system that uses a segmentation method, based on directional 
Canny filters, to measure tibial cartilage volume. 

 

Figure 1. A MRI of the knee in the sagittal plane, displaying tibial cartilage 
that has been manually segmented by a clinician. 

The paper is organised as follows. In Section II, we provide 
an overview of the developed system and the implementation 
details of the segmentation method. In Section III, we present 
some results of the segmentation algorithm. Discussion and 
concluding remarks are given in Section IV and Section V 
respectively. 

II. MATERIALS AND METHODS 

A. Overview 
We developed a semi-automatic system that is targeted at 

segmenting the tibial cartilage. Each image slice is segmented 
individually using an edge detection algorithm based on the 
Canny edge detector [20]. This segmentation method improves 
on the method proposed by Lynch [16] and was written in Java 
as a plugin for ImageJ [21]. The system has an interface that is 
compatible with DICOMDIR, allowing the user to work on a 
patient’s MRI images directly without having to reassemble the 
corresponding patient slices in the correct order. The DICOM 
interface is available as a plugin developed under the GNU 
General Public License by Thomas Hacklaender [22]. 

The system requires users to have knowledge on human 
knee joints. If tibial cartilage is detected in an image, the user 
places 8 points close to one of the boundaries of the cartilage 
by clicking on the appropriate locations on the image. These 
points form a cubic spline, where the first and the last point are 
called “end points” and the points in between, “control points”. 
The end points have to be placed with a bit of precision at each 
end of the tibial cartilage extremity while the control points can 
be placed loosely around the area of the cartilage boundary. 
This is because only the positions of the control points are 
optimised to detect the cartilage boundaries. When these points 
are placed in satisfactory positions, the segmentation algorithm 
is performed and the user is presented with an outline of the 

tibial cartilage with an adjustable boundary. If this outline is 
not “correct”, the user has the option of manually adjusting it. 
When the user is satisfied with the outline, the area of the 
segmented cartilage can be calculated and stored in a log file. 
The volume of the medial and lateral tibial cartilage can be 
calculated when all slices have been processed. This is done by 
multiplying the sum of the area data in the log file by the slice 
thickness. 

B. Implementation 
The segmentation process involves 2 key steps that are 

transparent to the user. The basic idea of the first step is to 
locate a cubic spline that runs approximately along the center 
of the cartilage. This can be achieve by smoothing the image 
and locating pixels that return a high intensity value. The 
intuition is that cartilage regions generally have higher 
intensity values compared to the surrounding bone/tissue, 
which have much lower intensity values. Therefore, by 
smoothing the image, the boundaries of the cartilage will be 
blurred and decrease in intensity due to the surrounding 
bone/tissue while the middle region of the cartilage will still 
contain pixels of high intensity. By locating these pixels of 
high intensity in the blurred image, we can locate the middle of 
the cartilage. 

When the middle of the cartilage is detected, the next step 
is to detect the boundaries of the cartilage. For the tibial 
cartilage, two boundaries have to be detected, the bone-
cartilage interface (lower boundary) and the boundary closest 
to the femur (upper boundary). The basic idea in this second 
step is to drive two cubic splines in opposite directions from 
the middle of the cartilage, each towards one of the cartilage 
boundaries. This is achieve by exploiting the characteristic 
shape of the tibial cartilage and the intensity values of the 
surrounding bone/tissue structure. In a large proportion of the 
MRI scans, the tibial cartilage appears as a horizontal strip of 
cartilage of high pixel intensity, surrounded by bone/tissue of 
lower pixel intensity. By calculating the image gradient in the 
y-axis, the two boundaries of the tibial cartilage can be 
differentiated and located due to the opposing values of the 
image gradient at each boundary.  

To implement the first step, the original image is smoothed 
from a coarse to fine scale using a Gaussian filter and 
optimising a cost function calculated from the filter responses, 
refer to (1). The purpose of this cost function is to detect the 
optimal positions for the control points of the center spline. 
Firstly, 5 evenly distributed points are inserted between each of 
the 8 points placed by the user, and the Gaussian filter response 
at each of these 43 points is summed. Because the length of the 
tibial cartilage is not large, placing more than 5 points between 
each point might result in repeated points. The cost function is 
then iteratively minimised by altering the position of the 
control points and recalculating the effect on the cost function. 
The positions of the end points are fixed, thus only the 
positions of the control points are moved. The 4 possible 
positions for the control point being adjusted are inward and 
outward perpendicular to the local spline direction, and in the 
two directions parallel to the local tangent to the spline. When 
the cost function cannot be reduced any further, the process 
stops. This optimisation process is run twice, the first time 



using a coarse scale Gaussian filter (σ = 2) and adjusting the 
control points by 2 pixels; and the second time using a finer 
scale Gaussian filter (σ = 1) and adjusting the control points by 
1 pixel. 
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To implement the second step, an optimisation algorithm 
similar to that previously described is used. Instead of Gaussian 
filters, directionally oriented Canny filters are used. The 
“normal” Canny edge detector [20] finds edges by looking for 
local maxima of the image gradient. The image gradient R∇  is 
calculated using the derivative of a Gaussian filter and is 
defined as: 

 ]R,[RR yx=∇ , (2) 

where Rx = filter response in the x direction and Ry = filter 
response in the y direction. In the case of directional Canny 
edge detection, the filter response R(Θ) is defined as:  

 ( ) Θ+Θ=Θ sinRcosRR yx   (3) 

Edges at the specified angle Θ return a positive filter 
response, while edges at (Θ+180o) return a negative filter 
response. See Fig. 2, where grey areas represent a value close 
to zero, white areas represent strong positive values and black 
areas, strong negative values. NOTE: Θ = 0o is horizontal with 
increasing x and Θ = 90o is vertical with increasing y. We set 
Θ=90o, thus eliminating the response in the horizontal x axis 
and including only the vertical response of the y axis. This 
enables the detection of the lower and upper boundaries of the 
cartilage from the sign of the filter response because when 
Θ=90o, the response of the directional Canny filter returns 
values that are opposite in sign on either side of the tibial 
cartilage boundary, see Fig. 2.  

The cost function for the second optimisation algorithm is 
the same as that used to detect the center spline. 5 evenly 
distributed points are inserted once again between the 8 points 
that define each spline. The directional Canny filter response 
with Θ set to 90o is calculated and the response for each of the 
43 points are summed and divided by the length of the 
resulting spline. To detect the lower boundary, the filter 
response is multiplied by –1, while for the upper boundary, the 
filter response is left as it is. Similarly, the cost function is 
iteratively optimised for the lower and upper boundaries by 
altering the position of the control points. When the cost 
function cannot be reduced any further or when an upper limit 
for the number of iterations is reached, the process stops. The 
upper limit minimises the deviation of the spline from the 
actual cartilage boundary and must be large enough so that it 
does not stop the optimisation prematurely. The optimisation 
algorithm is run twice, the first time using a coarse scale (σ = 
2) to calculate the image gradient and the second time using a 

finer scale (σ = 1). The control points are adjusted by 1 pixel 
for both cases. 

 

Figure 2. Directional Canny filter response, with Θ=90o 

The segmented cartilage area is calculated by multiplying 
the pixel height and width by the number of pixels within the 
boundary outline. The volume of the medial and lateral tibial 
cartilage for a patient is then calculated by summing the 
corresponding cartilage areas and multiplying by the slice 
thickness. The dimensions of the pixel height, pixel width, and 
slice thickness are obtained from the metadata in the MRI 
images. 

III. RESULTS 
Experiments were performed to determine the segmentation 

and measurement accuracy of our method. Both segmentation 
accuracy and measurement accuracy were determined by 
comparing the cartilage area collected from our method with 
those derived by the manual method. The difference between 
segmentation and measurement accuracy is that for 
segmentation accuracy, the user does not manually adjust the 
detected boundaries if they do not “correctly” outline the 
cartilage. With measurement accuracy, the user has the option 
of adjusting the boundaries before recording the area 
measurements. Fig. 3 and Fig. 4 show the steps involve 
segmenting this cartilage using our semi-automatic method. 

 

Figure 3. User places 2 end points and 6 control points. 



 

Figure 4. Tibial cartilage segmented without user adjustments 

Fig. 5 compares the cartilage area measured using the 
manual method and our semi-automatic method from a patient 
knee. This figure shows that the manual and semi-automatic 
measurement methods measure the same pattern of cartilage 
area within the joint.  

To examine the relationship between the measurements, a 
regression between the paired measurements from our method 
and the manual method was performed, see Fig. 6 and Fig. 7. 
The linear regression line in Fig. 6 shows strong correlation 
between the measurements of the manual and our semi-
automatic segmentation method when the user can manually 
correct the boundaries. If the boundaries were not adjusted, the 
linear regression line still shows a good correlation between the 
measurements, see Fig. 7. However, this correlation is not as 
strong as when the boundaries are manually adjusted. 

The results obtained correspond well with those measured 
using the manual method. In addition, we found that our semi-
automatic method of segmentation can reduce the time taken to 
process a single patient knee. Initial testing indicated around 30 
min to process a patient, compared to 60 min using the manual 
method. These figures are rough estimates and more precise 
data have to be collected to validate them. The users were also 
in the process of learning the operation of the system when 
these timings were taken. With more familiarity, the time taken 
should be even shorter. 
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Figure 5. Comparison of manual and semi-automated measurements for a 
patient. Image sequence is from medial (lower slice numbers) to lateral 

(higher slice numbers) for this patient knee. 
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Figure 6. Relationship between areas measured from manual and semi-
automated method. The linear regression line yielded R2=0.98, slope=1.02, y-

intercept=2.70. 
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Figure 7. Relationship between areas segmented from manual and semi-
automated method. Boundaries from semi-automated method have not been 
adjusted by user. The linear regression line yielded R2=0.84, slope=0.87 and 

y-intercept=11.23. 

IV. DISCUSSION 
Our data have shown that the semi-automatic method 

displays a high degree of measurement and segmentation 
accuracy. The other segmentation techniques mentioned in 
Section I focus on segmenting the femoral cartilage and only 
present results from a small number of patients, or in some 
cases, only a few MRI slices. This makes it difficult to 
compare their results with our own. 

Our segmentation method is an improved and simplified 
implementation of Lynch’s segmentation technique that is 
targeted at segmenting tibial cartilage. Our method produces 
better results than Lynch’s method when applied on tibial 
cartilage. Lynch’s segmentation technique, as described in 
[16], is not very clear on the implementation details. According 
to his description, the cost function to detect the cartilage 
boundary is calculated by obtaining the sum of directional 
Canny filter responses of points inserted between user placed 
control points, and dividing these responses by the length of the 
spline between the control points. The angle Θ, for each of the 



directional Canny filter response is oriented to be parallel to the 
angle between the local spline direction for each relevant point 
and the x-axis, θ. To detect the bone-cartilage (lower) 
boundary, the directional canny filter response is multiplied by 
–1 when 0o <= θ <90o or 180o <= θ < 270o. To detect the upper 
boundary, the directional canny filter response is multiplied by 
–1 when 90o <= θ <180o or 270o <= θ < 360o. This description 
of Lynch’s method was implemented and we obtained results 
that did not correspond with what was expected. Some of the 
control points of the lower boundary are incorrectly located on 
the upper boundary and vice versa for the control points of the 
upper boundary. This causes the boundaries to cut across each 
other’s path and produce an erroneous segmentation, see Fig. 8 
and Fig. 9.  

A common problem encountered during segmentation of 
cartilage is the non uniform texture of cartilage. This is due to 
the biochemically heterogeneous property of cartilage. From 
our library of MRI images, the range of 8 bit greyscale pixel 
intensities that define the tibial cartilage region can be from 70 
to 255 for a single slice, see Fig. 10. This causes inconsistent 
image gradients even after smoothing, and this can lead to one 
of the control points latching onto an incorrect position and 
iterating away from the boundary, resulting in an incorrect 
segmentation. 

Another common problem encountered with segmenting 
cartilage occurs when processing images where the femoral 
and tibial cartilages are in contact, see Fig. 11. Because some 
parts of the cartilage are actually in contact, there is no edge 
information for the upper boundary of the tibial cartilage. This 
causes the algorithm to steer towards the bone-cartilage 
boundary of the femoral cartilage instead. 

In most cases, the segmentation method works well and 
little or no adjustments are required to correct the outline. The 
number of slices where incorrect segmentation occurs for a 
patient knee is highly dependent on the set up of the MRI 
scanner. In MRI, the tissue contrast can be adjusted by 
selecting different types of pulse sequences and by changing 
the parameters of these sequences such as repetition time, echo 
time, flip angle, etc. Even though it is widely accepted that T1-
weighted gradient echo sequences with spectral fat suppression 
visualises cartilage with high contrast to surrounding tissue, 
there is no agreed setting for repetition time, echo time and flip 
angle. This leads to MRI images with varying tissue contrast 
between patients and this is a common problem encountered by 
data driven segmentation methods such as ours. 

A final comment about our method is the inflexibility of 
having a fixed number of control points. In most cases, 6 
controls points can clearly represent the shape of the tibial 
cartilage due to a lack of curvature. However, in some slices, 
the area of the cartilage can be very small and fitting 6 control 
points to these images are a bit more difficult. A solution to this 
problem would be to introduce some function that enables the 
user to define the maximum number of control points. This 
would involve more user interaction, but would increase the 
accuracy of the method. 

 

Figure 8. Tibial cartilage boundaries detected by Lynch’s implementation. 

 

Figure 9. Femoral cartilage boundaries detected by Lynch's implementation. 

  

Figure 10. Example of incorrect segmentation due to non uniform texture. 

 

Figure 11. Example of incorrect segmentation due to cartilage touching. 

V. CONCLUSION AND FURTHER WORK 
We have developed a semi-automatic system for 

quantitating knee cartilage volume. The segmentation method 
has been tested and compared with the current “gold” standard 



of manual measurements and has displayed a high degree of 
measurement and segmentation accuracy.  

There are a number of cases when using data driven 
segmentation methods such as our semi-automatic method 
leads to incorrect segmentation.  We intend to overcome these 
problems and develop a more accurate segmentation method by 
using model based segmentation methods such as Active Shape 
Models (ASM). To date we have only examined our 
segmentation method on healthy knees. We intend to test the 
segmentation method on MRI images of osteoarthritic knee, 
where cartilage edges may be less well defined. 
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